Differential pressure transducers for volume flow rate measuring units Dynamic differential pressure transducers

For the dynamic measurement of effective and differential pressures

Differential pressure transducers based on the dynamic measurement principle for volume flow rate measuring units Type VMR or VME

- Linear volume flow rate actual value 0 10 V DC or 2 10 V DC
- Recording of measured values for the display of volume flow rates or for the control of slave controllers
- Any installation orientation
- Parameters are factory set

03/2017 – DE/en **ТROX**[®]тесник

Differential pressure transducers for volume flow rate measuring units General information Dynamic differential pressure transducers

Туре		Page
Dynamic differential pressure transducers	General information	Dyn – 2
	Function	Dyn – 3
	Technical data	Dyn – 4
	Variants	Dyn – 5
	Electrical connection	Dyn – 6
	Characteristics	Dyn – 7

Application

- Electronic volume flow controller Universal with dynamic differential pressure transducer for use with volume flow rate measuring units
- Parameters are factory set

On-site adjusting is not required
Standard filtration in comfort air conditioning
systems allows for use of the transmitter in the
supply air without additional dust protection. Since
a partial volume flow is passed through the
differential pressure transducer in order to
measure the volume flow rate, please note:
With heavy dust levels in the room, suitable

extract air filters must be provided.

 If the air is polluted with fluff or sticky particles, or if it contains aggressive media, dynamic pressure transducers cannot be used

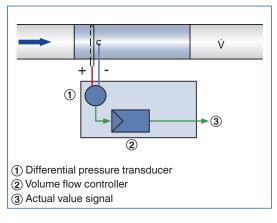
For this application the Universal controller is only used for measuring the differential pressure and for transforming the measured value into a linear voltage signal. Connections for setpoint value signal and actuator are not relevant, and neither are the corresponding technical data.

 Volume flow rate actual value is available as linear voltage signal

Description

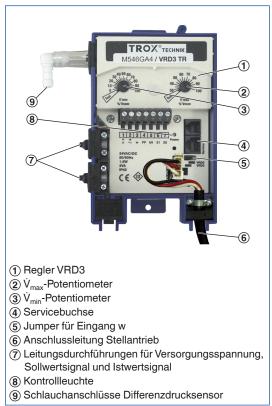
Application

Parts and characteristics


 Sensor for dynamic differential pressure measurements

Functional description

The volume flow rate is determined by measuring the effective pressure. For this reason the measuring unit is fitted with an effective pressure sensor.


The integral differental pressure transducer transforms the effective pressure into a voltage signal. The volume flow rate actual value is hence

Principle of operation – dynamic differential pressure transducer

available as a voltage signal. The factory setting is such that 10 V DC always corresponds to the nominal volume flow rate (\dot{V}_{nom}). Voltage ranges are factory stored in the controller. Changes on the customer's site can easily be carried out using an adjustment device or a notebook with service tool.

Volume flow controller VRD3

Supply voltage (AC)	24 V AC ± 20 %, 50/60 Hz
Supply voltage (DC)	24 V DC -10/+20 %
Power rating (AC)	without actuator max. 3.5 VA
Power rating (DC)	without actuator max. 2 W
Setpoint value signal input	0 – 10 V DC, R _a > 100 kΩ
Actual value signal output	0 – 10 V DC, 0.5 mA max.
IEC protection class	III (protective extra-low voltage)
Protection level	IP 40
EC conformity	EMC according to 2014/30/EU
Weight	0.440 kg

Universalregler VRD3

Any attachments are to be defined with the order code of the volume flow rate measuring unit.

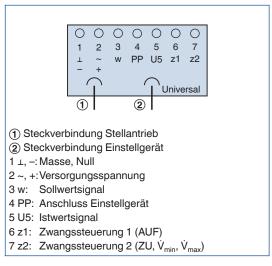
B10

Application

- Electronic volume flow controller VRD3 with dynamic differential pressure transducer for use with volume flow rate measuring units
- Differential pressure transducer and controller electronics are fitted together in one casing

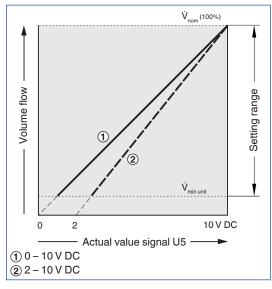
Signal voltage range

- 0:0-10VDC
- 2:2–10 V DC


Parts and characteristics

 Sensor for dynamic differential pressure measurements

Dynamic differential pressure transducers for volume flow rate measuring units


Order code detail	Attachment	Controller	Volume flow rate measuring unit
	Part number	Туре	
B10	M546GA4	VRD3	VMR, VME

B1*, Klemmenbelegung

Universal: VRD3

LMV-D3-MP, NMV-D3-MP, NMV-D3LON, VRD3, VRP-M

Volumenstrom-Istwert

$$0 - 10 \text{ V DC}$$

 $\dot{V}_{actual} = \frac{U5}{10} \dot{V}_{nom}$

BC0, BL0, BP*, B1*

Volumenstrom-Istwert

$$2 - 10 \text{ V DC}$$
$$\dot{\text{V}}_{\text{actual}} = \frac{\text{U5} - 2}{8} \dot{\text{V}}_{\text{nom}}$$

BC0, BL0, BP*, B1*, BB*